CSI – Montana Floodplains

The Challenges of Developing Duplicate and Corrected Effective Models.

Presenters:

Greg Gabel, P.E. DOWL

Tom Pluemer, E.I. DOWL

FEMA Hydraulic Modeling Procedures

- > DUPLICATE EFFECTIVE MODEL
 - Updating the effective model to current modeling software
- > CORRECTED EFFECTIVE MODEL
 - > Fixing errors, updating topography, and adding new XS
- > EXISTING/PRE-PROJECT CONDITIONS MODEL
 - Adding man-made changes since effective model
- > PROPOSED/POST-PROJECT CONDITIONS MODEL
 - > Evaluating the hydraulic impacts of your project

History of Montana Effective Models

- > EFFECTIVE MODELS IN MONTANA
 - > Big push in the 1970s and 1980s for floodplain mapping
 - Majority of the effective models are over 30-years old
 - > Typical WSP-2, WSPRO, or HEC-2 models
- > WHAT YEAR WAS HEC-RAS 1.0 RELEASED?
 - > 1995 Yes, 21-years old
 - HEC-RAS 5.0 was just released!
- > TECHNOLOGY & AVAILABLE DATA
 - > Advancements make it way easier to model today
 - Models developed on limited data
 - File storage was hard copies, no electronic file system

Resources to Developing Duplicate Effective Models

> WHAT ARE YOU TYPICALLY GIVEN?

- **→** HEC-2, WSP-2, WSPRO input and results files
- > Limited documentation from the Flood Insurance Report
- **Effective FIRM Maps**

Model Input and Result

- > FADED MICROFICHE COPIES
 - Hard to read / Missing or Cutoff pages
 - > Need to understanding the coding
 - **→** Hand written notes/cross outs
 - Additional cross sections not showing up in the FEMA maps

Flood Insurance Study Report

> LIMITED DOCUMENTATION

- Who performed the evaluation
- > Hydrologic Analysis Section
- > Hydraulic Analyses Section
- > Floodway Tables
- > Flood Profiles

FLOODING SOURCE		FLOODWAY			BASE FLOOD WATER SURFACE ELEVATION				
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY (FEET	WITH FLOODWAY NGVD)	INCREASE	
East Rosebud									
Creek	1 1			Į.	i				
A	1,020	632	1,824	2.9	4,195.2	4,195.2	4.195.7	0.5	
В	1,480	285	704	6.8	4,203.4	4,203.4	4,203.9	0.5	
č	1,560	366	1.534	3.1	4,206.0	4,206.0	4,206.5	0.5	
D	3,000	122	715	6.7	4,222.9	4,222.9	4,223.4	0.5	
E	5,100	731	2,711	1.8	4,253.6	4,253.6	4,254.1	0.5	
F	8,700	767	1,949	2.4	4,295.3	4,295.3	4,295.8	0.5	
G	11,460	452	825	5.8	4,333.3	4,333.3	4,333.8	0.5	
H	14,340	286	1,138	4.2	4,368.0	4,368.0	4,368.5	0.5	
I	17,000	123	598	8.0	4,412.8	4,412.8	4,413.3	0.5	
J	19,360	437	1,489	3.2	4,446.6	4,446.6	4,447.1	0.5	
K	21,260	356	1,108	4.1	4,470.6	4,470.6	4,471.1	0.5	
L	21,340	111	750	6.1	4,474.3	4,474.3	4,474.8	0.5	
M	23,080	133	846	5.4	4,496.0	4,496.0	4,496.5	0.5	
N	25,600	253	1,341	3.4	4,528.0	4,528.0	4,528.5	0.5	
0	26,500	381	1,098	4.2	4,540.7	4,540.7	4,541.2	0.5	
P	26,600	410	817	5.6	4,542.1	4,542.1	4,542.6	0.5	
Q	27,260	258	853	5.4	4,549.1	4,549.1	4,549.6	0.5	
Feet Above Confl	uence With W	est Roseb	L ud Creek a	l Rosebud	Creek			L	
EDERAL EMERGENCY MANAGEMENT AGENCY STILLWATER COUNTY, MT (UNINCORPORATED AREAS)				FLOODWAY DATA					
				EAST ROSEBUD CREEK					

Flood Insurance Rate Maps

> PLAN VIEW LAYOUT OF THE MODEL

- Cross section locations for letter crossings
- Bridge crossings locations

Developing the Duplicate Effective Model

- > PROJECT OVERVIEW
 - Goal: Replacement of 3 MDT Bridges Along Highway 2
 - Location: Immediately West of Chinook, MT
- > WHY REPLACE THE BRIDGES???
 - Road Widening = Improve Public Safety
 - Existing Bridges are Wooden Structures
 - ➢ All 3 Bridges Are At The End Of Their Service Life
- > PROJECT CHALLENGES
 - Located in a Detailed Floodplain
 - Hydrology
 - Stream/Reach Lengths
 - Complex Flow Splits

- > PROJECT CHALLENGE #1 DETAILED FLOODPLAIN INVESTIGATION
 - Multiple Studies on the Floodplain
 - Original FIS 1987
 - LOMR 1993 Chinook Airport Expansion
 - Updated FIS 2006

- > INITIAL ASSUMPTIONS BASED ON INVESTIGATION
 - > 1987 FIS
 - Modeled in HEC-2
 - Hydrology Regional Frequency
 - Basic Flow Spilt Analysis Completed
 - East and West Overflow Bridges <u>NOT</u> Modeled
 - No Return Flow From the Overflow Bridges
 - Milk River and Redrock Coulee Modeled Independently

- INITIAL ASSUMPTIONS BASED ON INVESTIGATION (CONTINUED)
 - > 1993 LOMR
 - Modeled in HEC-2
 - Channel was Lengthened Due to Runway Extension
 - Hydrology and Flow Splits Adopted from 1987 FIS
 - Additional XS's Added to Redrock Coulee Model
 - > 2006 FIS
 - Incorporated the changes from the 1993 LOMR

- > PROJECT CHALLENGE #2 HYDROLOGY
 - > An Independent Evaluation was Completed
 - 5 Separate Hydrologic Analysis Completed
 - Used to verify FIS Hydrology
 - Drainage Basin Area = 363 sq. mi.
 - FIS Drainage Basin Area = 265 sq. mi.

- > PROJECT CHALLENGE #2 HYDROLOGY
 - > Investigation into the Previous Studies
 - Very Limited Documentation
 - 1987 FIS States there are closed basins for a neighboring stream
 - Assumption Potential for Closed Basins
 - Further Review of Aerial Imagery Showed Closed Basins
 - Drainage Basin Excluding Closed Basins = <u>275 sq. mi.</u>
 - FIS Drainage Basin Area = 265 sq. mi.
 - **Conclusion**
 - Calculated Flows Were Within 10% of the Reported FIS Flows

- > PROJECT CHALLENGE #3 STREAM/REACH LENGTHS
 - Duplicate Effective Model
 - Data from the 1993 LOMR was used
 - 2 Cross Sections were Added to the 1987 FIS Model
 - But the River Stationing was not updated.
 - Corrected Effective Model
 - Using Updated Aerial Imagery and GIS
 - The River Stationing was Updated
 - Additional Cross Sections Were Added

- ▶ PROJECT CHALLENGE #4 FLOW SPLITS
 - > Flow Splits From the 1987 FIS Were Adopted in the 1993 LOMR
 - Problems:
 - Calculated using best technology at the time
 - Manning's Equation
 - Flow <u>DID NOT</u> Return to the Model
 - Limited Documentation = No Explanation Why???

- > PROJECT CHALLENGE #4 FLOW SPLITS
 - Challenge How to Better Model the Complex Flow
 - Solution Two-Dimensional Hydraulic Model
 - FLO-2D PRO was used
 - Grid Based Model 20 ft Cell Size
 - DEM Data
 - Photogrammetry
 - Topographic Survey
 - 5 Meter IfSAR Data
 - Channels Were Built Into the Model
 - Bridges and Culverts were Modeled as Hydraulic Structures

- > PROJECT CHALLENGE #4 FLOW SPLITS
 - **Findings:**
 - Two-Dimensional Hydraulic Model Results
 - Flow Does Return to the Main Channel
 - Some Flow Does Leave the System
 - Implications:
 - Returning Flow = Greater Backwater Influences on All Crossings
 - 100-yr FIS Flow Downstream of Main Bridge = 1,900 cfs
 - 100-yr 2-D Flow Downstream of Main Bridge = 4,106 cfs

100-Year Model – Simulation Time = 0.2 hrs

100-Year Model – Simulation Time = 0.4 hrs

100-Year Model – Simulation Time = 0.6 hrs

100-Year Model – Simulation Time = 0.8 hrs

100-Year Model – Simulation Time = 1.0 hrs

100-Year Model – Simulation Time = 1.2 hrs

100-Year Model – Simulation Time = 1.4 hrs

100-Year Model – Simulation Time = 1.6 hrs

100-Year Model – Simulation Time = 1.8 hrs

100-Year Model – Simulation Time = 2.0 hrs

100-Year Model – Simulation Time = 2.2 hrs

100-Year Model – Simulation Time = 2.4 hrs

100-Year Model – Simulation Time = 2.6 hrs

100-Year Model – Simulation Time = 2.8 hrs

100-Year Model – Simulation Time = 3.0 hrs

100-Year Model – Simulation Time = 4.0 hrs

100-Year Model – Simulation Time = 6.0 hrs

100-Year Model – Simulation Time = 8.0 hrs

100-Year Model – Simulation Time = 10.0 hrs

100-Year Model – Simulation Time = 14.0 hrs

100-Year Model – Simulation Time = 20.0 hrs

100-Year Model – Simulation Time = 20.0 hrs

Lohman – East & West Redrock Coulee Bridge Replacement

- > WHERE IS THE PROJECT TODAY:
 - **➢ All Hydraulic Models Are Complete for Red Rock Coulee**
 - Models meet a No-Rise Condition Compared to the Existing Conditions:
 - Road Ditches Were Moved Due to Roadway Widening
 - Road Ditches Designed to Not Increase Existing WSEL
 - Re-Designed the Downstream Channel to Increase Flow Capacity
 - New Bridges Designed with Similar Hydraulics to Existing Bridges
 - The Project is in the Middle of Final Design and the Floodplain Permit will be submitted in the Near Future

> 1987 FIS STUDY

- Indicated that the hydraulic models were completed in WSP-2, HUD-15 or HEC-2
- No detailed documentation of the hydraulic analysis

> OBTAINED COPIES OF EFFECTIVE MODEL

- > HEC-2 input and results
- **➢** Completed in 1980, After the 1959 Road Reconstruction

- > REPRODUCED HEC-2 INPUT FILE
 - Just came back from a conference that suggested recreating the HEC-2 input
- > RAN THE INPUT FILE IN HEC-2
 - > Results match exact! Great!

T1 T2 T3	STILLWATER COU 100 YR E. ROSEBUD	JNTY								
01	ICHECK	INQ	NINV	IDIR	STRT	METRIC	HVINS	Q	WSF1	FQ
	0.000000	2.000000	0.000000	0.000000	0.000000	0.000000	3.000000	0.000000	4195.199	0.000000
J2	NPROF	IPLOT	PRFVS	XSECV	XSECH	FN	ALLDC	IBW CHNIM	ITRACE	
	1.000000	0.000000	-1.00000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
J3	VARIABLE CODES FOR SUMMARY PRINTOUT									
	110.0000	200.0000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
NC QT ET	0.150000 2.000000 0.000000	0.200000 5354.000 0.000000	0.080000 5354.000 5.400000	0.300000 0.000000 0.000000	0.500000 0.000000 0.000000	0.000000 0.000000 0.000000	0.000000 0.000000 0.000000	0.000000 0.000000 0.000000	0.000000 0.000000 0.000000	0.000000 0.000000 0.000000
X1 GR GR GR GR GR GR GR	201.0000 4200.000 4194.598 4193.898 4190.199 4190.898 4192.598 4193.500 2.000000	33.00000 0.000000 138.0000 378.0000 570.0000 680.0000 775.0000 800.0000 4760.000	40.00000 4194.699 4191.098 4192.297 4193.000 4191.699 4191.699 4193.500 4760.000	138.0000 40.00000 195.0000 388.0000 590.0000 690.0000 782.0000 830.0000 0.000000	0.000000 4189.500 4192.797 4193.699 4193.398 4189.500 4192.000 4196.797 0.000000	0.000000 55.00000 228.0000 409.0000 700.0000 785.0000 870.0000 0.000000	0.000000 4192.000 4192.699 4192.699 4192.898 4191.199 4190.898 0.000000 0.000000	0.000000 80.00000 250.0000 448.0000 730.0000 790.0000 0.000000 0.000000	0.000000 4192.098 4193.699 4193.000 4191.098 4192.797 4191.199 0.000000 0.000000	0.000000 110.0000 271.0000 543.0000 672.0000 740.0000 795.0000 0.000000 0.000000
X1 X5 GR GR GR GR GR	202.0000 2.000000 4210.000 4198.199 4196.598 4199.000 4200.000 4209.199	29.00000 4203.398 519.9000 751.0000 826.0000 870.0000 1010.000 1230.000	817.0000 4203.898 4210.000 4198.000 4196.199 4202.500 4200.598 4209.199	880.0000 0.000000 520.0000 763.0000 846.0000 880.0000 1015.000	460.0000 0.000000 4204.098 4203.098 4196.898 4203.699 4200.598 4209.598	460.0000 0.000000 530.0000 764.0000 851.0000 990.0000 1050.000 1700.000	460.0000 0.000000 4202.199 4202.297 4196.398 4199.898 4203.598 4215.699	0.000000 0.000000 570.0000 817.0000 856.0000 1000.000 1070.000 1830.000	0.000000 0.000000 4202.297 4199.000 4196.398 4199.000 4204.500 0.000000	0.000000 0.000000 750.0000 818.0000 861.0000 1005.000 1150.000 0.000000

- > EXPORTED HEC-2 DATA INTO HEC-RAS
 - **▶** HEC-RAS model matches exactly the HEC-2 results
 - Great! Let's move on to Corrected Effective Model
- > WORKING ON THE CORRECTED EFFECTIVE MODEL
 - > The results for these cross sections weren't changing
 - What's going on?
 - > Identified the flow file had set water surface elevations.
 - > Remove them and the model didn't match report WSEL with 0.5-ft
 - Two different locations were over 2-ft from the reported numbers

> PUT OUR INVESTIGATION HATS ON

- > Reviewed the HEC-2 Data and found the X5 Card in the Code
- > Research and found out there was 1975 SCS Flood Analysis

Coordinated with SCS Bozeman office to get report and the model results

- > INVESTIGATED THE SCS WSP-2 MODEL
 - **▶** WSEL hard enter in HEC-2 didn't match WSP-2 Results
 - > Flow data in the HEC-2 model didn't match the WSP-2 Data
 - Model appears to model Post-1959 bridge
 - > SCS Mapping shows Post-1959 bridge and roadway alignment
 - Redeveloped the WSP-2 model in HEC-RAS

> CSI CONCLUSION ON THE EFFECTIVE MODEL

- > The effective model is the 1975 SCS WSP-2 model with updated design flows.
- ➤ It was assumed that at the time of the study, there was a requirement to use HEC-2 and this was the project specific decision that wasn't documented.
- The FIRM basemap was out of date and didn't reflect the existing roadway alignment.

> DEVELOPED TWO DUPLICATE EFFECTIVE MODELS

- One using HEC-RAS
- Using the WSP-2 Model and new flows

> DEVELOPED THE CORRECTED EFFECTIVE MODEL

Incorporated additional cross sections

- > OTHER CORRECTIONS
 - Upgraded XS with more detailed topography
 - Change reach lengths
 - > Change expansion and contraction coefficients
 - > Add some ineffective flow areas
 - Revised bridge opening to better model pier blockage
- > EXISTING CONDITIONS MODEL
 - Same as the Corrected Effective Model
- > AFTER ALL THIS EFFORT, WE WERE FINALLY READY TO EVALUATE THE HYDRAULIC IMPACTS OF THE PROJECT

> PROPOSED BRIDGE CROSSING

- > 330-ft Two-Span Bridge
- > Bridge is constructed within the backwater profile of the existing bridge
- ➤ Removal of the existing bridge and the Pre-1959 bridge abutment significantly reduces the backwater
- Proposed bridge provides a no-rise condition
- Upstream roadway embankment was re-designed to prevent hydraulic impacts

> WHERE IS THE PROJECT AT TODAY?

- > Applied for the Floodplain Permit in 2013
- ➤ Received a Floodplain Construction Permit with conditions to complete a LOMR after construction in 2013
- ▶ Project is currently in the Right-of-way phase with an anticipating letting in 2017 or 2018.

Key Points

- > TECHNOLOGY IS A WONDERFUL THING
 - Better Data & More Refined Models
 - Electronic world has provided better way to manage data
- > IT TAKES TIME TO DEVELOP MODELS
 - > To document and compare the differences
- > DOCUMENTATION IS IMPORTANT
 - Consider engineers 30-plus years from now will be looking at your work
 - > A little more documentation would save a lot of time investigating.

